# Python ICE 6

Given uniformly spaced points
\(a=x_0\lt x_1\lt \dots\lt x_n=b\),
with \(x_{i+1}-x_i=h\) for every \(i\),
the composite midpoint rule for approximating
the integral of a function \(f\) is given by
$$
\int_a^b f(x) dx\approx
\sum_{i=0}^{n-1} f\left(\frac{x_i+x_{i+1}}{2}\right) h
$$
Write a Python function called `midpoint` to evaluate
a midpoint rule approximate to any function \(f\)
we specify.
We will call the midpoint function
as `midpoint(f,a,b,n)`, with arguments as
in our other approximate integral functions.

Assignment 6 is posted.

The midterm exam will take place on Friday,
12 October. As always, you are permitted any paper
notes you find useful, but no electronic devices are
allowed. The test is cumulative, but emphasizes
the material covered in the last fours weeks.
A sample exam is
available.

You need to install
Matlab
on your computer by Wednesday.
You do not need Simulink or any particular toolboxes, though
you might find the Symbolic toolbox useful at some time
in the future (not in this class).