
YOUNG MEASURES AND ORDER-DISORDER TRANSITION IN

STATIONARY FLOW OF LIQUID CRYSTALS

M. CARME CALDERER∗ AND ALEXANDER PANCHENKO†

Abstract. We study a system of nonlinear second order ordinary differential equations modeling
Poiseuille flow of liquid crystals with variable degree of orientation, at the limit of large Ericksen
number. The system is singularly perturbed and degenerate, and as a result the solutions are highly
oscillatory. We obtain the relations satisfied by the Young measures generated by sequences of weak
solutions, and show that the persistent oscillations are encoded in the Young measure generated by
the molecular alignment variable. The effective equations correspond to the macroscopic isotropic
Newtonian flow with a liquid crystalline microstructure indicating a remnant alignment.
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1. Introduction. In this article we study stationary flow of nematic liquid crys-
tals with large Ericksen number, E , in terms of the Young measures generated by
sequences of weak solutions of the governing equations. It is experimentally well
known that liquid crystal flows with large Ericksen number present a high density of
defects and texture which increases with increasing values of E (cf. [19], [11], [16], [13]
and [18]).

The system that we analyze consists of ordinary differential equations for the
variable fields s(x), φ(x) and v(x), with x ∈ [−1, 1] with R2 × (−1, 1), representing
the domain of the flow. The governing system is highly nonlinear, non-autonomous
and singularly perturbed with respect to a small parameter µ = 1

E
. Its principal part

as well as the boundary conditions become degenerate at s = 0. These combined
features result in a highly oscillatory behavior of weak solutions. The goal of the
present analysis is to encode oscillations persistent at the limit µ → 0 into Young
measures.

We study a plane Poiseuille flow, which is driven by a prescribed pressure gradient,
with vanishing velocity field at the boundary. The variable φ corresponds to the
angle between the unit molecular director, n = (sinφ, 0, cosφ), and the velocity,
v = (0, 0, v(x)), of the flow. The variable degree of orientation, s ∈ (− 1

2 , 1), gives the
quality of alignment of the molecules with the director field, with s = 1 corresponding
to perfect alignment, and s = − 1

2 describing the case with molecules placed on a
plane perpendicular to n. Especially relevant to the present study is the isotropic
case, s = 0, with randomly oriented molecules. Points, lines or planes in the flow
region with s = 0 correspond to nematic liquid crystal defects, with undefined φ.
Moreover, φ becomes discontinuous across defect lines and planes. The variables
s and n correspond to an eigenvalue and eigenvector, respectively, of the optically
uniaxial and traceless order tensor Q. The latter represents a second order moment
of the molecular orientation field of a rigid polymer.

The equations that we analyze follow from those derived by Ericksen to model flow
of liquid crystals with variable degree of orientation [8]. They yield the Ericksen-Leslie
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equations when the order parameter s is taken to be a nonzero constant. Relevant
features of the model include the Helmholtz free energy, which is a generalization
of the Oseen-Frank energy, and the viscous, anisotropic, stress tensor. The latter is
characterized by a set of anisotropic viscosity functions, αi(s), 1 ≤ i ≤ 6, known as
Leslie coefficients (in particular, α4(0) represents the Newtonian viscosity). The free
energy density consists of quadratic terms on ∇n, and of a bulk, multi-well potential,
f(s), favoring special directions of alignment at equilibrium. As a result of the elastic
and viscous contributions to the model, the nature of the flow is fully non-Newtonian.

The flow behavior is determined mostly by three nondimensional parameter groups,
the Reynolds number R, the Interface number I, and the Ericksen number E . The
latter measures the ratio of the viscous torque of the flow with respect to the elastic
one. The condition of E being large corresponds to flow with large pressure gradient,
and also to the case of viscous torque dominating the elastic one. The parameter
I is associated with the free energy required to maintain defects in the flow, and it
corresponds to the quotient of the bulk elastic energy and the gradient part of the
Helmholtz free energy. The ratio J = I−1E is relevant to the analysis. The deriva-
tion of the model studied in this article, the physical and non-dimensional parameter
groups can be found in [3], [4] and [5].

We observe that s identically zero is not a solution of the problem. In the case
of an arbitrary flow domain, the bulk isotropic state, s ≡ 0, can only be realized at
equilibrium, if permitted by the boundary conditions. In the case of Poiseuille flow,
prescribing a non-zero pressure gradient excludes s = 0 from being an equilibrium
solution. Consequently, one of the main outcomes of our study is to show that the
isotropic state can be nearly realized in an effective sense.

Intuitively, one expects that for large Ericksen number, viscosity effects are dom-
inant, and therefore the molecular alignment (associated with s 6= 0) is destroyed.
The absence of alignment is indicated by s = 0. In this sense, the limit of large
Ericksen number should represent the transition from order to disorder. In section
5, we show (Theorem 5.1) that there is indeed a sequence of generalized solutions
such that in the limit µ→ 0, s tends to zero, and v becomes the Newtonian velocity
field of Poiseuille flow. This alone would indicate a perfect isotropic limit. However,
Young measure generated by φ satisfies the additional moment relations, indicating a
residual molecular alignment. Although at a macroscopic scale the flow is isotropic,
a liquid crystalline microstructure is present. The oscillatory behavior of solutions
at the limit of large Ericksen number was numerically detected by the simulations
performed in [14]. This provided the motivation for the present study.

From analytic point of view, the governing system is highly degenerate at s = 0
and, in addition, singularly perturbed as µ → 0. One mathematical difficulty is
that standard methods in the theory of ordinary differential equations, developed for
analysis of singular perturbation [7] cannot be readily applied here. On the other
hand, owing to the singularly perturbed nature of the system, a priori bounds for
the derivatives are not uniform in µ, and therefore, embedding theorems cannot be
applied to obtain compactness of s. We overcome such difficulties by constructing
tight bounds in terms of super-solutions and sub-solutions. Both are solutions of a
classical variational problem for particle motion in a central force field [1]. The upper
and lower bounds on s so obtained tend to 0 as µ → 0, which entails compactness.
This leads to partial stability in the sense that s converges to zero uniformly as µ→ 0,
while φ oscillates with increasing frequency.

Another interesting aspect of the system being driven to degeneracy at the limit
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µ→ 0 manifests itself in the prescription of boundary conditions. Since the system is
of second order with respect to s and φ, one expects that, both s(±1) and φ′(±1) (or
φ(±1)) should be prescribed. We choose s(±1) = µ. In taking limit µ → 0, we find
that the boundary conditions φ′(±1) cannot be freely chosen, but depend on s(±1).
In addition, |φ′(±1)| → ∞ as µ → 0, in agreement with the fact that our limiting
process amounts to creating a boundary defect. The unboundedness of φ′ causes φ to
be undefined at the defect location as expected. So, boundary values for the angular
variable become redundant at the limit. The choice of s(±1) = µ does not detract
from generality. Our purpose is to study the oscillatory phenomenon on the bulk, and
avoid boundary layer contributions that would appear in the case that s is not driven
to zero at the boundary. These contributions could be incorporated in the current
analysis using the techniques previously developed in [3], [4] and [5], but we do not
attempt such an analysis here.

The article is organized as follows. Following the introductory section 1, the
statement of the problem is presented in section 2. We developed a priori bounds and
necessary conditions for Young measures in section 3. The main result of the paper
is stated in section 4, with Theorem 4.3 being the focus of the work. A discussion of
the effective equations is presented in section 5.

2. Problem Setting. We study the following system of equations on the interval
I = (−1, 1):

µ
(
a1s

′′ − a2s(φ
′)2
)
= G1(s, φ, x),(2.1)

µa2(s
2φ′)′ = G2(s, φ, x),(2.2)

where

G1(s, φ, x) =
1

2
β1(s)g

−1(s, φ)x sin 2φ+
1

J

df

ds
(s),(2.3)

G2(s, φ, x) =
1

2
(γ1(s) + γ2(s) cos 2φ)g

−1(s, φ)x.(2.4)

Equations (2.1)–(2.4) model plane Poiseuille flow of nematic liquid crystals with vari-
able degree of orientation. The unknown functions are the s(x), φ(x), whose physical
meaning is explained in the Introduction. In (2.1)–(2.4), ′ denotes derivative with
respect to the independent variable x ∈ I. The boundary conditions are prescribed
as follows.

s(−1) = µ, s(1) = µ,(2.5)

φ′(−1) = A(µ), φ′(−1) = B(µ),(2.6)

v(−1) = v(1) = 0.(2.7)

As mentioned in the introduction, A(µ) and B(µ) cannot be arbitrarily prescribed
for sufficiently small µ > 0. The system (2.1)–(2.4) contains scalar parameters µ,
J , a1 and a2. The small parameter µ is the reciprocal of the Ericksen number E ,
and J = I−1E , where I is the interface number. Both E and I are discussed in the
Introduction. For more details on these quantities see [3], [4] and [5]. The parameters
a1, a2 are assumed to be positive. We suppose that β1, γ1, γ2, g are smooth functions
of s on the interval (− 1

2 , 1). In addition, β1 < 0, γ1 > 0, and γ1, γ2 satisfy

γ1(s) = γ̂1(s)s
2, γ2(s) = γ̂2(s)s,(2.8)
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where γ̂1(s), γ̂2(s) are smooth functions of s, and γ̂1(0) 6= 0, γ̂2(0) 6= 0. Further,
g(s, φ) (called the viscosity function) satisfies

g(s, φ) ≥ τ > 0.(2.9)

Due to assumptions (2.8), and (2.9), 1
sG2(s) is a smooth function of s, and satisfies

1

s
G2(s) = O(1),(2.10)

for s small.
Equations (2.1)–(2.9) completely describe the problem studied in the paper. The

key observation that enables us to overcome mentioned in the Introduction lack of
uniform bounds is as follows. If the right hand side (2.1) and (2.2) is replaced with,
respectively, 1

J
df/ds and zero, and, in addition a1 = a2, one obtains the classical

system modeling motion of a particle in a central force field with potential − 1
J
f(s).

(see, e.g. [1]). In that case the variable x is time, and s(x), φ(x) are the radial
and angular particle coordinates, respectively. This system has two first integrals:
the angular momentum and the total mechanical energy, which makes the problem
completely integrable. In this paper, this classical system (with different potentials) is
used to construct sub- and super-solutions of (2.1), (2.2) (see the proof of the theorem
4.3 below).

In the remainder of this section we outline the derivation of this problem from the
Leslie-Ericksen equations studied previously in [3], [4], [5]). The equations considered
in these papers are as follows.

µ
(
a1s

′′ − a2s(φ
′)2
)
= β1(s)v

′ sinφ cosφ+
1

J

df

ds
(s)(2.11)

µa2(s
2φ′)′ = (γ1(s) + γ2(s) cos 2φ) v

′(2.12)

1

R
(g(s, φ)v′)′ = 1,(2.13)

Equation (2.13) is the velocity equation. Its right hand side represents the prescribed
pressure gradient, and R is the Reynolds number. Since we are interested in the
behavior of solutions when E is large and the Reynolds number R is moderate, there is
no loss of generality in assuming R = 1. The function β1(s) is a Leslie coefficient, and
γ1(s), γ2(s) and g(s, φ) are given in terms of the Leslie coefficients αi(s), i = 1, . . . , 5,
as follows.

γ1 := α3 − α2, γ2 := α2 + α3,(2.14)

g(s, φ)=
1

2
α4(s) + α1(s) sin

2 φ cos2 φ(2.15)

+
1

2
(α5 − α2)(s) sin

2 φ+
1

2
α3(s) cos

2 φ,

In the sequel (Section 5), we shall make use of of the fact (see e.g. [3], [4], [5])
that αj(0) = 0 for j 6= 4. This implies

g(0, φ) =
1

2
α4(0) > 0,(2.16)
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where 1
2α4(0) is the Newtonian viscosity. The second law of thermodynamics requires

that the system be dissipative. This imposes inequality restrictions on the Leslie
coefficients β1(s) and αi(s) (see [12]). As a consequence, we have that β1 < 0, γ1 > 0
and

g(s, φ) ≥ 0, s ∈ [−
1

2
, 1], φ ∈ R(2.17)

For the forthcoming analysis, we will impose a stronger assumption (2.9), where τ > 0
is a material parameter related to the Newtonian viscosity. Such a strict inequality is
an immediate consequence of E 6= 0 [3]. Additional assumptions on Leslie coefficients
consistent with kinetic theory of polymers are discussed in [3] and [4].

Next, we solve equation (2.13) for the velocity v, obtaining

v′(x) = (x+ C)g−1(s(x), φ(x)),(2.18)

where C is a constant of integration. The boundary conditions v(±1) = 0 imply,

v(x) =

∫ x

−1

tg−1(s(t), φ(t)) dt+ C

∫ x

−1

g−1(s(t), φ(t)) dt,

and

C = −

(∫ 1

−1

g−1(s(t), φ(t)) dt

)−1 ∫ 1

−1

tg−1(s(t), φ(t)) dt.(2.19)

It should be noted that C is a functional of s, φ taking constant values for a
given flow. A calculation using the positivity of g yields −1 < C ≤ 1. Postulating
translational invariance of the equations, it is not difficult to show that there exists
an interval I (which may be different for different µ) such that C = 0 when the
equations are considered on I. Calculations involving C are analogous to those with
the remaining terms. So, without loss of generality, we will set C = 0 in the equations.
We also point out that this does not change the qualitative behavior of solutions
because of the translational invariance. Combining (2.11), (2.12) and (2.18), we obtain
the reduced system (2.1)–(2.4).

3. A Priori Bounds and Necessary Conditions for Young Measures. In
this section we introduce the concept of Young measures generated by sequences of
weak solutions of the problem. We derive integral identities and a priori estimates
satisfied by weak solutions. Passing to the limit µ→ 0 in the weak formulation of the
equations yields algebraic momentum relations satisfied by the Young measures. Such
relations can be appropriately interpreted as the effective equations of the system.

A weak solution of the system (2.1)-(2.2) is a pair of functions (s, φ) such that
s ∈W 1,2(I), sφ ∈W 1,2(I) and for all test functions h ∈ C1

0 (I), there hold the integral
identities

−µa1

∫

I

s′h′dx− µa2

∫

I

s(φ′)2hdx =

∫

I

G1hdx,(3.1)

−µa2

∫
s2φ′h′dx =

∫

I

G2hdx,(3.2)

where the right hand sides G1, G2 are given by (2.3) and (2.4).
For each µ > 0, existence of weak solutions satisfying s ∈ (− 1

2 , 1), |φ| ≤
π
2 together

with the boundary conditions (2.5), (2.6) can obtained using the existence theorem
in [2].
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3.1. L2-bounds. The L2-estimates will be obtained from the following

Proposition 3.1.

Let s, φ be a sufficiently smooth solution of (2.1) and (2.2). Then the following
identities hold:

−µa1

∫

I

|s′|2 dx+ µa1(s
′s(1)− s′s(−1))− µa2

∫

I

s2(φ′)2 dx =(3.3)

∫

I

G1(x, s, φ)s dx,

−µa2

∫

I

s2(φ′)2dx+ µa2((s
2φ′φ)(1)− (s2φ′φ)(−1)) =(3.4)

∫

I

G2(x, s, φ)φdx.

Proof. Multiplying (2.1) by s and integrating by parts we obtain

µa1

∫

I

(s′)2dx+ µa1(s
′s(1)− s′s(−1)) + µa2

∫

I

s2|φ′|2dx =

∫

I

G1(x, s, φ)sdx.

Multiplication of (2.2) by φ and integration by parts yields (3.4).

When s and φ are uniformly bounded with respect to µ, G1 and G2 are also
uniformly bounded with respect to µ. If, in addition, the boundary terms b1(µ) ≡
µa1(s(1)s

′(1) − s(−1)s′(−1)) and b2(µ) ≡ µa2((s
2φ′φ)(1) − (s2φ′φ)(−1)) are also

uniformly bounded, then the identities (3.3) and (3.4) yield the following uniform
apriori bounds:

µ
1
2 ‖s′‖L2(I) ≤ C

µ
1
2 ‖sφ′‖L2(I) ≤ C,(3.5)

where C > 0 is independent of µ.

Note that b1(µ) and b2(µ) vanish when s(±1) = 0. Otherwise, if s′(±1) and φ′(±1)
do not grow too fast as µ → 0, and s and φ are uniformly bounded, then b1(µ) and
b2(µ) are also uniformly bounded. Such statement follows from the estimates on the
boundary layer terms valid for a large class of boundary conditions. Indeed, near the
boundary x = ±1, s can be well approximated by a boundary layer term S, satisfying

S(x) = O(e
−|x−1|

µ1/2 ), for µ close to 0 (cf. [3], and [4]). Moreover,

|s′(±1)| ≤
C

µ1/2
,(3.6)

where C is independent of µ. A related property of the solutions of the governing
equations for small µ is the oscillatory behavior of s about s = 0 on the interval I;
an estimate on the number of oscillations gives N = O(µ−

1
2 ). Moreover, the first and

the last zeroes of s in I approach the boundary as µ→ 0 [2]. Numerical simulations
of such a behavior are presented in [14].
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3.2. Momentum relations for Young Measures. The estimates (3.5) allow
for some control of the oscillations and yield existence of the microscopic length scale
l ∼ µ1/2|I|. Unfortunately, the bounds on the derivatives are not uniform in µ, so
it is not possible to extract subsequences convergent weakly in W 1,2(I) as µ → 0.
Since s, φ are bounded pointwise, we can extract subsequences weak-*convergent in
L∞(I), and hence weakly convergent in L2(I). However, this convergence cannot be
improved to strong due to highly oscillatory behavior of s and φ. Such a behavior is
appropriately encoded in the Young measure generated by sequences of weak solutions
[20]. In [17], this measure is defined as follows.

Definition 1. A Young (parameterized) measure is a family of probability mea-
sures λ = {λx}x∈Ω associated with a sequence of functions fj : Ω ⊂ RN → Rm such
that
(i) supp(λx) ⊂ Rm,
(ii) λx depend measurably on x ∈ Ω, which means that for any continuous function
φ : RN → R, the function

φ(x) =

∫
φ(y)dλx(y) = 〈φ(y), λx(y)〉

is (Lebesgue) measurable,
(iii) If the sequence φ(fj) converges weakly in L

p(Ω), 1 ≤ p <∞ (weak–? in L∞(Ω)),
then the weak limit is the function

φ(x) =

∫
φ(ξ)dλx(ξ).

In the sequel, we use the following facts about Young measures. The first ([17], th.
6.2) is the existence theorem.

Theorem 3.2. Let Ω ⊂ RN be a (Lebesgue) measurable set and let zj : Ω→ Rm

be measurable functions such that

sup
j

∫

Ω

g(|zj |)dx <∞,

where g : [0,∞] is a continuous, nondecreasing function such that limt→∞ g(t) =∞.
Then there exists a subsequence, not relabeled, and a family of probability mea-

sures, λ = {λx}x∈Ω (the associated Young measure) with the property that whenever
the sequence {ψ(x, zj(x))} is weakly convergent in L

1(Ω) for any Caratheodory func-
tion ψ(x, ξ) : Ω×Rm → [−∞,∞], the weak limit is the function

ψ(x) =

∫

Rm

ψ(x, ξ)dλx(ξ).

The second fact concerns Young measure generated by sequences of vector func-
tions, for which one has strong convergence for some components, but not for all of
them. ([17], Proposition 6.13).

Theorem 3.3. Let zj = (uj , vj) : Ω → Rd × Rm be a bounded sequence in
Lp(Ω) such that {uj} converges strongly to u in L

p(Ω). If λ = {λx}x∈Ω is the Young
measure associated with zj, then λx = δu(x) ⊗ νx for (Lebesgue) almost all x ∈ Ω,
where {νx}x∈Ω is the Young measure corresponding to {vj}.

Young measures provide a description of the weak limits of the non-weakly con-
tinuous functions G1 and G2 in (2.1) and (2.2). We denote by λx the Young measure
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associated with the sequences of weak solutions (sµ, φµ). By definition, for any contin-
uous functionH on [−1/2, 1]×[−π/2, π/2], the sequenceH(sµ, φµ) converges weakly-*
to

H̄(x) =

∫ 1

−1/2

∫ π/2

−π/2

H(s, φ)dλx(s, φ),

It is a well known fact ([17]) that Young measures are in general difficult to com-
pute. In particular, there is no general method for derivation of conditions imposed
on Young measures by the non-linear differential constraints on generating sequences.
Available results concern sequences generated by gradients [10]. A generalization of
[10] to sequences solving certain constant-coeffticient linear partial differential equa-
tions is obtained in [9].

In the present case it is possible to derive some necessary conditions for Young
measures passing to the limit in the integral identities (3.1), (3.2). In the next propo-
sition we use notation a = (a2/a1)

1/2.
Proposition 3.4. Let λx be the Young measure generated by a sequence of weak

solutions (sµ, φµ) satisfying the estimates (3.5). Then for any test function h ∈ C1
0 (I),

the following relations hold:
∫ (

G1(x, y, z) sin az +
1

ay
G2(x, y, z) cos az

)
dλx(y, z)h(x)dx = 0,(3.7)

∫ (
G1(x, y, z) cos az −

1

ay
G2(x, y, z) sin az

)
dλx(y, z)h(x)dx = 0.(3.8)

Proof. Let w(x) be a test function. In the integral identities (3.1), we first replace
h with the test function sin(aφ)w. Next, we formally substitute 1

sa cos(aφ)w for h in
(3.2), and add the resulting identities. This yields,

−µa1

∫
(s sin aφ)′w′dx =

∫
(G1 sin aφ+

1

as
G2 cos aφ)wdx.(3.9)

To justify the use of 1sa cos(aφ)w as a test function, we point out that 1
sG2 is a smooth

function of s and satisfies (2.10). Thus, the right hand side of the previous equation
is well defined. This allows us to approximate 1

s by a sequence of test functions and
then pass to the limit in the resulting integral identities.

The estimates (3.5) on derivatives yield

‖ µ1/2(s sin aφ)′ ‖L2(I)≤ C

with C independent of µ. Hence the integral on the left tends to zero as µ→ 0. Using
the definition of Young measures to pass to the limit in the right hand side we obtain
the first equation in (3.7).

Next, using cos aφw as a test function in (3.1) and −A
s sin aφw in (3.2) and

summing up, we have

−µa1

∫
(s cos aφ)′w′ dx =

∫
(G1 cos aφ−

1

as
G2 sin aφ)w dx.(3.10)

Again, the limit of the integral on the left is zero. Passing to the limit in (3.10) we
get the second equation in (3.7).
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Remark 1. The method of proof is based on the following formal procedure.
Consider the original system (2.1)-(2.2):

µ(a1s
′′ − a2s(φ

′)2) = G1(x, s, φ),

µa2(s
2φ′)′ = G2(x, s, φ).

If we multiply the first equation of the system by sin aφ , the second equation by
1/s cos aφ and add the resulting equation, we obtain

µa1(s sin aφ)
′′ = G1 sin aφ+

G2

s
cos aφ.(3.11)

Similarly, multiplying the first equation by cos aφ , the second by −1/s sin aφ and
summing up we get

µa1(s cos aφ)
′′ = G1 cos aφ−

G2

s
sin aφ.(3.12)

The momentum relations from the proposition are obtained by passing to the limit
(in the sense of distributions) in the integral identities corresponding to the system
(3.11), (3.12), and thus they are the effective equations for this new system. Moreover
relations (3.7) (3.8) are also effective equations for the original system, since their
solutions satisfy the differential equations almost everywhere, and, for each µ > 0, the
zero sets of the functions cos aφ, sin aφ and s can be shown to be countable by standard
Sturm-Liouville results as in [2].

Remark 2. It is interesting to ask to what extent the relations from the propo-
sition characterize Young measures generated by sequences of weak solutions of (2.1)
and (2.2). The measures in question satisfy (3.7) and (3.8), but these conditions are
far from being sufficient, since they can be obtained for Young measures generated
by different equations. These equations may contain, for instance, terms with linear
combinations of higher-order derivatives of s and sφ′ multiplied by sufficiently large
powers of µ.

4. Generalized Solutions and Isotropic Defects. In this section, we con-
struct generalized solutions sµ, φµ from a special class of weak solutions. Generalized
solutions are such that sµ approaches 0, uniformly on I, and φµ is bounded and
presents multiple jump discontinuities. Such jump discontinuities may correspond to
the isotropic (plane) defects in the stationary three dimensional flow.

The numerical experiments carried out in [14] indicate partial stability, which
means that sµ → 0 as µ → 0, and φµ oscillates with a frequency on the order of
µ−1/2. In this subsection we obtain sufficient conditions for this type of behavior.
To do this, we appeal to results from the theory of ordinary differential equations
The main technical tool is Nagumo’s theorem [15], (stated as theorem 4.1 below).
It provides sufficient conditions for existence of solutions satisfying pointwise upper
and lower bounds, constructed from sub– and super solutions. We use this result to
prove theorem 4.3 on existence of partially stable solutions. The strategy in the proof
is as follows. First we consider arbitrary solutions satisfying boundary conditions
that depend on µ ( see theorem 4.3 for the precise formulation). Then we show that
among these there is a large class of boundary conditions for which sµ is bounded
by a multiple of µ. Existence of such solutions follows from the Nagumo theorem.
To apply the theorem, we show that sub– and super solutions for our system can be
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constructed from solutions of a classical variational system that models the motion
of a particle in a central force field. The solutions of the variational systems depend
on the parameters (first integrals). By choosing these parameters carefully, we find
sub- and super solutions satisfying the desired bounds. An additional difficulty is that
Nagumo theorem concerns classical solutions, while our system may have singularities
near the points where s = 0. We deal with this problem by examining solutions only
on the set where the absolute value of sµ larger than µ and then using upper and
lower bounds to demonstrate that on this set |sµ| ≤ 2µ.

Nagumo’s result concerns solutions of the Dirichlet problem on the interval [a, b]
for a single second order equation

u′′ = F (x, u, u′)(4.1)

u(a) = u0; u(b) = u1.

Assume that F is a continuous function of its arguments satisfying the Nagumo con-
dition

F (x, u, z) = O(|z|2); as |z| → ∞(4.2)

for all (x, u) in a rectangle [a, b] × [α, β]. The following theorem is due to Nagumo
[15].

Theorem 4.1. Suppose that F satisfies (4.2), and there exist functions
α(x), β(x) with the properties
i) α, β ∈ C2([a, b]);
ii) α(x) ≤ β(x);
iii) α′′ ≥ F (x, α, α′), β′′ ≤ F (x, β, β′);
iv) α(a) ≤ u0 ≤ β(a), α(b) ≤ u1 ≤ β(b). Then the problem (4.1) has a solution
u(x) ∈ C2([a, b]) such that

α(x) ≤ u(x) ≤ β(x)(4.3)

on [a, b].
This theorem has been used systematically by Howes and Chang [7] to study

stability of singularly perturbed ODE. The condition (4.2) is not the most general
(see [7] for other types of conditions), but it is sufficient for our purpose. It should
be pointed out that stability conditions for systems derived in [7] do not work in the
present case, since the vector solution s, φ is not expected to be stable.

According to this theorem, to show that sµ → 0 it is enough to construct sequences
of bounds αµ(x), βµ(x) for solutions sµ of the first equation (2.1) which converge to
zero uniformly on I. Since we are dealing with the system, the bounds for s must be
uniform in φ. First we consider the case when 1

J
tends to infinity as µ goes to zero.

Theorem 4.2. Suppose that

1

J
→ ∞ as µ→ 0

and assume that φ is an arbitrary differentiable function on I. If f has a local mini-
mum at s = 0, then for any µ ∈ (0, 1] there exists a solution sµ to the scalar boundary
value problem

µa1s
′′ = µa2s(φ

′)2 −
1

2
β1(s)x

sin 2φ

g(s, cos 2φ)
+

1

J

df

ds
(s),(4.4)
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s(−1) = Aµ s(1) = Bµ

such that sµ → 0 uniformly on I with the rate independent of φ.
Proof. By assumption on f , there exists a fixed interval E containing zero such

that if s ∈ E then df
ds (s) is negative for negative s, and positive for positive s. Pick

a sequence µn strictly decreasing, converging to zero, and such that 1
J
(µn) is an

increasing sequence. Recall assumptions on β1, g, contained in the problem statement
(2.1)–(2.9). Since 1

J
(µn) → ∞ as n → ∞, for each n sufficiently large there exists a

constant βn > 0, βn ∈ E such that

µa2βn(φ
′)2 +

1

J
(µ)

df

ds
(βn)−

1

2
β1(βn)x

sin 2φ

g(s, cos 2φ)
≥ 0(4.5)

for all 0 < µ ≤ µn. The last term on the left is bounded by a constant 1
2
m
τ , where τ

is a postulated lower bound on g, and m is a bound on xβ1. Since df
ds (s) is strictly

increasing for s > 0, s ∈ E, we can choose βn to be monotonically decreasing and
converging to zero (it is sufficient to have 1

J
(µn)

df
ds (βn) ≥

1
2
m
τ . If we choose the

boundary conditions for sµ properly, constant functions βn will form a sequence of
upper bounds for sµ. Similarly, we can choose a sequence αn < 0 converging to zero
that forms a sequence of lower bounds. The crucial fact here is that the sign of the
term containing φ′ is the same as the sign of s, and the same is true about the term
1
J

df
ds if s ∈ E.

Remark 3. We point out that the condition J → 0 (i.e., 1
J
→ ∞) as µ → 0

represents the Leslie-Ericksen limit of the theory, that is the case when the liquid
crystal is described by the director n, with the order parameter taking a constant value
corresponding to a critical point of the bulk energy f(s).

Next we consider much more subtle case of a bounded 1
J
. We will assume that

1
J

and f satisfy the following conditions.

i) 1
J
(µ) is bounded by a constant M , for all µ ≤ 1,

ii) f(s) ∈ C2(− 1
2 , 1),

iii) there exist a, b ∈ (− 1
2 , 1) such that | dfds (s)| ≤ M for s ∈ [a, b], df

ds (s) > 0 on (b, 1)

and df
ds (s) < 0 on (− 1

2 , a).
We observe that the last condition on f may allow several potential wells between

s = − 1
2 and s = 1. This may include pure nematic liquid crystals as well as compounds

([6], chapter 1).
Theorem 4.3. Suppose that conditions i),ii) and iii) are fulfilled. Consider

sequences {sµ, φµ} of weak solutions of (2.1-2.2) such that

s(−1) = s(1) = µ(4.6)

holds. Then there exists A(µ), B(µ) ∈ R such that those sequences {sµ, φµ} addition-
ally satisfying

(φµ)′(−1) = A(µ), (φµ)′(1) = B(µ),(4.7)

have the property that sµ → 0 as µ→ 0 uniformly on I.
Proof. Consider a solution of the problem

µa1s
′′ = µa2s(φ

′)2 −
β1x sin 2φ

2g(s, φ)
+

1

J

df

ds
(s),(4.8)
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µa2(s
2φ′)′ =

x

g
(γ1(s) + γ2(s) cos 2φ)(4.9)

satisfying the boundary conditions (4.6) and (4.7) with arbitrary values A and B to be
specified later. Although this solution is weak, the estimates (3.5) imply the continuity
of S. We now wish to construct upper and lower bounds for S using Theorem 4.1.
First, integrate (4.9) to obtain

S2(x)Φ′(x) =
1

µa2
(µ2A+ p(x)),(4.10)

where

p(x) =

∫ x

−1

y

g(S(y),Φ(y))
(γ1(S(y)) + γ2(S(y)) cos 2Φ(y)) dy.(4.11)

Next, we represent I as the union of the sets E+ = {x ∈ I : S > µ}, E− = {x ∈
I : S < µ} and E0 = {x ∈ I : |S| ≤ µ}, and define s+ and s− to be restrictions of S to
E+, E−, respectively. Since E+ is open, it can be represented as E+ = ∪∞j=1Ij where
Ij = (aj , bj) are open intervals, and s(aj) = s(bj) = µ. Let us consider the system
(4.8), (4.9) on some interval Ij . Since S ≥ µ on Ij , we can express S from (4.10) and
substitute into (4.8):

µa1S
′′ =

1

µa2S3
(
µ2A+ p(x)

)2
+
β1(S)x sin 2Φ

2g(S,Φ)
+

1

J

df

ds
(S),(4.12)

Our next step will be to use Nagumo’s theorem to construct a solution u of (4.12)
such that −2µ ≤ u ≤ 2µ on Ij . Note that the right hand side of (4.12) is a continuous
function of S when x ∈ Ij , and the Nagumo condition is satisfied automatically, since
the right hand side is independent of S ′. The bounds on u must be independent of
the choice of Φ, which would allow us to adjust Φ later on when A = φ′(−1) is chosen.
We begin with the construction of the upper bound. To construct the bound, we use
the comparison variational system

µa1q
′′ = µa2q(ψ

′)2 −
dh

dq
(q),(4.13)

µa2(q
2ψ′)′ = 0.(4.14)

This system is classical (see [1]), at least when a1 = a2. It describes the motion of a
particle in a central force field with the potential h. In that case, x is time, and q, ψ
are the radial and angular particle coordinates, respectively. The following properties
of (4.13), (4.14) are well known. The system has two first integrals: the angular
momentum

M = q2ψ′

and the total energy

E =
1

2
µa1(q

′)2 +
1

2
µa2q

2(ψ′)2 + h(q).

The evolution of q is described by the autonomous differential equation

µa1q
′′ = µa2

M2

q3
−
dh

dq
(q).(4.15)
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Using M , we rewrite E as

E =
1

2
µa1(q

′)2 + V (q),

where

V (q) =
1

2
µa2

M2

q2
+ h(q)

is the effective potential energy. It is possible to choose E,M and h (non-uniquely) so
that V (q) has a minimum at q0 = 3/2µ and q remains close to q0 for all x ∈ Ij ; in such
a case, there are positive constants c1, c2, such that c1µ ≤ q ≤ c2µ, and c1 > 1, c2 < 2.
The function q will be a upper bound for u provided

µa2
M2

q3
− h′(q) ≤

1

µa2q3
(
µ2A− C1

)2
−
C2
τ

+
1

J

df

ds
(q).(4.16)

Indeed, the left hand side of (4.16) equals µa1q
′′, while the right hand side is dominated

by the right hand side of (4.12) when q is positive, (which is the case), and the
constants C1, C2 are chosen as follows: C1 is and upper bound for |p(x)|, C2 is an
upper bound for |β1(q)|x. The constant τ is the assumed lower bound for g. All these
constants are independent of the choice of Φ and µ. Also, it should be noted that we
expect A to be sufficiently large to make the quantity µ2A − C1 positive. Note also
that the range of q for which (4.16) should hold is limited to the interval (c1µ, c2µ).
Since for these values of q the second an third terms in the right hand side of (4.16)
are bounded independent of µ, all we have to do is choose A(µ) large enough so that

(µ2A− C1)
2 − (µa2)

2M2 ≥ K,(4.17)

where K is sufficiently large and independent of µ. Then, for µ small enough, the
first term in the right hand side is dominant. We observe that the condition (4.17)
is independent of the choice of the interval Ij , so it will remain the same when we
consider different intervals. This completes the construction of the upper bound.

The construction of the lower bound is similar. We only need to choose q to
be negative with the absolute value on the order of µ. Since the power of q in the
dominant term is odd, we obtain a lower bound q ≥ −2µ. Now by Nagumo’s theorem,
there exists u such that the pair u,Φ solves system (4.8), (4.9) on Ij and such that
|u| ≤ 2µ holds on Ij . Next we show that u and s+ must coincide on Ij . Suppose
that s+ ≥ u on some interval L ⊂ Ij and s+ = u at the endpoints of L. Consider
the function v = s+ − u. Substituting u, s+ into (4.8) and subtracting the resulting
equations we find that

µa1v
′′ = µa2v(Φ

′)2 −
1

2

( β1(s+)
g(s+,Φ)

−
β1(u)

g(u,Φ)

)
x sin 2Φ +(4.18)

1

J
(
df

ds
(s+)−

df

ds
(u)).

Since β1

g(s,Φ) is Lipschitz in s, we can bound
( β1(s

+)
g(s+,Φ) −

β1(u)
g(u,Φ)

)
x sin 2Φ by Cgv,

where Cg is independent of the choice of Ij . Furthermore, for µ sufficiently close to

zero, because of condition iii), df
ds (u) will be inside the interval on which df

ds and d2f
ds2

are bounded. Now if s+ is in the same interval, then using condition ii), we can write
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| dfds (s
+) − df

ds (u)| ≤ Cfv where Cf is independent of Ij . Otherwise, if s+ is large,
df
ds (s

+) > | dfds (u)| by condition iii). Hence we can make the right hand side of (4.18)
positive for all nonnegative v, enlarging A, if necessary. Then (4.18) implies that
v′′ ≥ 0 on L. Hence, v is a convex function on L which is nonnegative and satisfies
zero boundary conditions. Hence, v must be identically zero on L.

Similarly we prove that if u ≥ s+ on some interval, then in fact u = s+. Form
this and continuity of s+ we conclude that u = s+ on Ij and the original solution S
satisfies

µ ≤ S ≤ 2µ(4.19)

on Ij .

Since the same arguments apply to all intervals in E+, we obtain a solution S
which satisfies the inequality (4.19) in E+. Moreover, |S| ≤ µ in E0.

It remains to prove that −2µ ≤ S ≤ −µ on E−. The proof is the same as in
the case of E+. The only difference is in the sign of the term s(φ′)2, which becomes
negative. Since this is the dominant term by construction, an appropriate lower bound
is easily constructed using Nagumo’s theorem and the variational problem similar to
(4.13), (4.14). The upper bound on E− again follows from the uniqueness argument
and definition of E−. Finally, the choice of B is made using the chosen value of A in
(4.10) and evaluating at x = 1.

Thus, for each sufficiently small µ, there exists a solution Sµ satisfying |Sµ| ≤
2µ everywhere on I, and thus the sequence of these solutions will converge to zero
uniformly as µ→ 0.

The proof of the previous theorem brings out some relevant physical aspects of
the problem as well as related mathematical issues. The former arguments strongly
reflect the interplay between the mechanisms responsible for the oscillatory behavior
of solutions and the degenerate nature of the boundary conditions for s close to 0. (Let
us recall that φ is undefined when s = 0.) In order to illustrate such features, let us
consider the boundary value problem with prescribed nonzero boundary conditions on
s, and also prescribed values of φ′. If we now allow the boundary values of s approach
0, it is natural to expect that the boundary values of φ′ cannot be independently
chosen. This is indeed the nature of Theorem 4.3. Specifically, the restriction on
φ′(±1) imposed by s(±1) = µ, with µ small is contained in inequality (4.17).

A consequence of the fact that φ′(±1) is large, as indicated by (4.17), is that φ′

is positive on I, so φ is increasing on the intervals of continuity. Consequently, φ
may be large in such intervals. In order to ensure boundedness of φ, we will make
use of the shift invariance of the system (2.1)-(2.2). Indeed, if s, φ is a solution, then
s, φ + kπ is also a solution for any integer k. Starting with an increasing φ̃, we can
split the interval I into subintervals on which kπ ≤ φ̃ ≤ (k+1)π and, then define φ by
shifting appropriately on each subinterval. The function φ obtained in such a fashion
will be bounded, rapidly oscillating and discontinuous. We will refer to solutions with
rapidly oscillating discontinuous φ as generalized to distinguish them from the weak
solutions. The discontinuities of φ are associated with liquid crystal defects.

Corollary 4.4. Let s̃µ, φ̃µ be a sequence of weak solutions constructed in the
Theorem 4.3. Then there exists a sequence of generalized solutions sµ, φµ such that
i) sµ → 0 uniformly on I;
ii) |φµ| ≤ π

2 ;

iii) for each µ > 0, the support of the distribution (φ̃µ)′−(φµ)′ is a finite set of points;
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iv) for any h ∈ C1
0 (I), s

µ, φµ satisfy the integral identities

µa1

∫

I

(sµ)′h′ dx− µa2

∫

I

sµ((φµ)′)2h dx =

∫

I

G1(s
µ, φµ)h dx,(4.20)

µa2

∫

I

(sµ)2(φ̃µ)′h′ dx =

∫

I

G2(s
µ, φµ)h dx.

Proof. Let J be the largest integer such that φ(−1) ≥ Jπ − π
2 . The interval I

can be written as a union of Nµ disjoint intervals Ik, k = 0, 1, 2..Nµ, such that x ∈ Ik
when

π(J + k)−
π

2
≤ φ(x) < π(J + k) +

π

2
.

Starting with s̃µ, φ̃µ, we define sµ, φµ as follows:

sµ = s̃µ,

φµ = φ̃µ − π(J + k),

when x ∈ Ik. Note that the distributional derivative of φµ is not locally integrable.
We have, however,

(φµ)′ = (φ̃µ)′,

when both are restricted to the complement of the set of the endpoints of Ik.
Next we observe that Gl(s, φ) = Gl(s, φ+mπ), where l = 1, 2 and m is an integer.

Hence, we can replace φ̃µ by φµ in the right hand sides of the integral identities for
the weak solutions which yields (4.20).
Remark 4. Note that, in general, it is not possible to replace (φ̃µ)′ by (φµ)′ in the left
hand side of the second identity.

5. Effective Configurations. The limiting process yields effective governing
equations and configurations of Newtonian Poiseuille flow, with constant viscosity.
However additional equations associated to microstructural phenomena also arise at
the limit. They may be related to the occurrence of remnant ordered states on a
microscopic scale.

Let us first recall the equations (2.11)–(2.13) and the definition of g:

g(s, φ)=
1

2
α4(s) + α1(s) sin

2 φ cos2 φ(5.1)

+
1

2
(α5 − α2)(s) sin

2 φ+
1

2
α3(s) cos

2 φ.

If {sµ, φµ} is a sequence of functions such that sµ → 0 uniformly, then by (2.16)

g(sµ, φµ)→
1

2
α4(0),

uniformly on I as µ goes to zero. Up to a subsequence, the solution vµ of (2.13)
tends to a limit v0 in L2(I), and weakly in W 1,2(I). Hence, the product g(sµ, φµ)v′µ
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of a strongly convergent sequence g and a weakly convergent sequence v′µ converges

to 1
2α4(0)v

′
0 weakly in L2(I). This implies that v0 satisfies the effective equation

ηeffv
′′
0 = 1,(5.2)

which is the Newtonian Poiseuille flow with constant effective viscosity ηeff = 1
2α4(0).

When the Ericksen number is large and the Reynolds number is of order 1, the typical
viscosity is much larger than the typical elasticity. It is natural to expect that align-
ment of the molecules will be destroyed by the diffusion, so that liquid crystal flow
is that of an isotropic liquid with a constant viscosity. If that were the case, equa-
tion (5.2) would be the only effective equation of the limiting flow. Rigorous analysis
suggests, however, that one should also consider the Young measure νx generated by
the sequence φµ. In the Remark 5, following the proof of the theorem 5.1, we explain
that νx is non-trivial, which means that it cannot have the form δ(z − φ(x)) for any
function φ(x). Since localization of νx at φ signals strong convergence, this implies
that the sequence φµ cannot converge strongly. Therefore, νx must describe ”possible
disordered states” compatible with the boundary conditions and macroscopic flow.

Combining Theorem 3.3 and Proposition 3.4 with the partial stability Theorem
4.3, we obtain

Theorem 5.1. Let s̃µ, φ̃µ be a sequence of weak solutions from the Theorem 4.3
satisfying the a priori estimates

‖ s̃′ ‖L2(I)≤ C,

‖ s̃φ̃′ ‖L2(I)≤ C,

with C independent of µ. Let (sµ, φµ) be a corresponding sequence of generalized
solutions. Then, up to a subsequence,
i) sµ → 0 uniformly on I;
ii) The sequence φµ generates a Young measure νx satisfying moment relations

∫ 1

−1

∫ π/2

−π/2

(
G1(0, z, x) sin az −

1

a

G2

z
(0, z, x) cos az

)
dνx(z)h(x) dx = 0,(5.3)

∫ 1

−1

∫ π/2

−π/2

(
G1(0, z, x) cos az +

1

a

G2

z
(0, z, x) sin az

)
dνx(z)h(x) dx = 0,

for each h ∈ C1
0 (I). In (5.3), a = (a2/a1)

1/2;
iii) The sequence s((φ̃µ)′)2 converges to a measure ρ in the sense of distributions.
Moreover,

ρ =

∫ π/2

−π/2

G1(0, z, x)dνx(z).(5.4)

Proof. Part i) follows directly from Theorem 4.3. Since sµ converges to zero in L2,
the corresponding Young measure is δ(y). Hence, part ii) follows from the Theorem
3.3 and momentum relations in Proposition 3.4.

Next, consider the integral identity

−µa1

∫

I

s′h′dx+ µa2

∫

I

s(φ′)2h dx =

∫

I

G1(x, s, φ)h dx.
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Since ‖ s′ ‖L2(I)≤ Cµ−1/2 with C independent of µ, the first integral on the left
converges to zero as µ→ 0. The integral in the right hand side converges to

∫

I

∫ π/2

−π/2

G1(0, z, x)dνx(z)h(x)dx.

This yields,

lim
µ→0

∫

I

s(φ′)2h dx =

∫

I

∫ π/2

−π/2

G1(0, z, x)dνx(z)h(x) dx,

for all h ∈ C1
0 (I). Since this space is dense in C0(I), the equality above holds for all

h ∈ C0(I). Hence, the distributional limit of s(φ′)2 is a Radon measure ρ such that

∫

I

hdρ =

∫

I

h

∫ π/2

−π/2

G1(0, z, x)dνx(z)dx

for all h ∈ C0(I).
Remark 5.Strong convegence of φµ is incompatible with the moment relations

(5.3). If strong convergence takes place, then νx(z) = δ(x − φ(x)) for some function
φ (the strong limit). If that were the case, then from (5.3) we would obtain

G1(0, φ, x) sin aφ−
1

a

(
G2

s

)
(0, φ, x) cos aφ = 0,(5.5)

G1(0, φ, x) cos aφ+
1

a

(
G2

s

)
(0, φ, x) sin aφ = 0,(5.6)

and thus

G1(0, φ, x) = 0,(5.7) (
G2

s

)
(0, φ, x) = 0.(5.8)

This means that s = 0, φ = φ is an equilibrium solution of (2.1, 2.2). Direct compu-
tation shows that s = 0 cannot be an equlibrium solution for any φ.

6. Conclusions. We study the oscillatory behavior of the solutions of the gov-
erning equations modeling Poiseuille flow of liquid crystals with variable degree of
orientation, at the limit of large Ericksen number E . The governing equations are
singularly perturbed and highly degenerate. The oscillations of s occur about the
isotropic value s = 0. At points where s vanishes the angle of alignment φ is discon-
tinuous and φ′ becomes unbounded. This situation corresponds to the presence of
defects in the flow. We obtain necessary condition for the Young measures generated
by sequences of solutions, and show that the persistent oscillatory behavior is encoded
in the Young measure generated by φ. We prove a partial stability result establishing
uniform convergence of s to 0 as µ = E−1 → 0, and the increasingly oscillatory be-
havior of φ. Compactness of s allows us to pass to the limit in the governing system
and obtain the effective equations. The latter consist of the Newtonian flow equation
together with the algebraic relations for the Young measure generated by φ. This
suggest that macroscopically the flow is isotropic and Newtonian with a remaining
liquid crystalline microstructure.
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