COLLEGE OF ARTS AND SCIENCES Department of Mathematics and Statistics

Alexander Panchenko

Professor
Neill Hall Room 329
Phone: (509) 335-3127
Email: panchenko@math.wsu.edu

Publications
  1. A method for tomographic diagnostics of a jet exhaust.Vestnik of Kharkov Polytechnic University, 7 (1992), no. 260, 73-86. (Russian).

  2. Inverse source problem of radiation transfer: a special case of the attenuated Radon transform. Inverse Problems, 9 (1993), 321-338.

  3. Generalized projection and section theorems in diffraction tomography. in: Applied Problems of Radon Transform. AMS Translations, series 2, v. 162 (1994) , 33-43.

  4. R. P. Gilbert and A. Panchenko. Acoustics of a stratified poroelastic composite. Zetitschrift fur Analysis und ihre Anwendungen, 18 (1999), 977-1001.

  5. Quasi-exponential solutions for some PDE with coefficients of limited regularity. In: Direct and inverse problems of mathematical physics, Kluwer, Dordrecht, 2000, 161-184.

  6. L. Ehrenpreis, P. Kuchment and A. Panchenko. The exponential X-Ray transform and John's Equation. I. Range description. Contemporary Mathematics, 251 (2000), 173-188.

  7. On a differential operator containing a large complex parameter. Applicable Analysis, 74 (2000), 1-26.

  8. An inverse problem for the magnetic Schroedinger Equation and quasi-exponential solutions of nonsmooth partial differential equations. Inverse Problems, 18 (2002), no.5, 1421-1434.

  9. V. Harik, R. P. Gilbert and A. Panchenko. Vibration of two bonded periodic composites. International Journal of Solids and Structures, 40 (2002), no. 12, 3177-3193.

  10. R. P. Gilbert and A. Panchenko. Effective acoustic equations for a nonconsolidated medium with microstructure. In: Acoustics, mechanics and the related topics of mathematical analysis, World Scientific, River Edge, NJ, (2002), 164-170.

  11. L. Paivarinta, A. Panchenko and G. Uhlmann. Complex geometrical optics solutions for Lipschitz conductivity.Revista Matematica Iberoamericana, 19 (2003), 56-72.

  12. R. P. Gilbert and A. Panchenko. Effective acoustic equations of a two-phase medium with microstructure. Mathematical and Computer Modelling, 39, no. 13, (2004), 1431-1448.

  13. L. Berlyand, L. Borcea and A. Panchenko. Network approximation for effective viscosity of highly concentrated suspensions with complex geometry. SIAM Journ. Math. Analysis, 36 (5), 2005, 1580-1628.

  14. R. P. Gilbert, A. Panchenko and X. Xie. Homogenization of a viscoelastic matrix in linear frictional contact. Math. Models and Methods in Applied Sciences,28, (2005), 309-328.

  15. R. P. Gilbert, A. Panchenko and X. Xie. A prototype homogenization model for acoustics of granular materials.International Journal of Multiscale Computational Engineering,4, (5{6), 2006, 585-600.

  16. L. Berlyand and A. Panchenko. Strong and weak blow up of the viscous dissipation rates for concentrated suspensions. Journal of Fluid Mechanics, 578 (2007), 1-34.

  17. M. C. Calderer and A. Panchenko. Young measures and order-disorder transition in liquid crystal flows. SIAM Journ. Math. Analysis, 38, no. 5 (2007), 1642-1659.

  18. M. Fang, R. P. Gilbert, A. Panchenko and A. Vasilic, Homogenizing the time harmonic acoustics of bone: the monophasic case. Mathematical and Computer Modeling, 46, 3-4, (2007), 331-340.

  19. K. A. Ariyawansa, L. Berlyand and A. Panchenko. A network model of geometrically constrained deformations of granular materials. Networks and Heterogeneous Media., (2008), 3 (1), 125-148.

  20. A. Panchenko. G-convergence and homogenization of viscoelastic flows. Submitted.

  21. A. Cherkaev, A. Kouznetsov and A. Panchenko. Still states of bistable lattices, compatibility, and phase transition. Continuum Mechanics and Thermodynamics, (2010), 22 (6-8), 421-444.

  22. S. J. Mesarovic, R. Baskaran and A. Panchenko, Thermodynamic coarsening of dislocation mechanics and the size-dependent continuum crystal plasticity. J. Mech. Phys. Solids 58 (2010), no. 3, 311329.

  23. R. P. Gilbert, A. Panchenko and A. Vasilic, Acoustic propagation in a random saturated medium: the monophasic case. Math. Methods in Appl. Sciences, (2010), Published online 09/20/2010, DOI 10.1002/mma/1360.

  24. R. P. Gilbert, A. Vasilic and A. Panchenko, Homogenization of cancellous bone with an interstitial non-Newtonian fluid. Non-linear Analysis, to appear.

  25. A. Panchenko, L. I. Barannyk and R. P. Gilbert. Closure method for spatially averaged dynamics of particle chains. Nonlinear Analysis: Real World Applications, 12 (2011), 1681-1697.

  26. A. Tartakovsky, A. Panchenko and K Ferris. Dimension reduction method for ODE fluid models. J. Comp. Phys., 230 (2011), 8554-8572.

  27. A. Panchenko, L.L. Barannyk, K.Cooper. Deconvolution closure for mesoscopic continuum models of particle systems. Submitted.

  28. A. Panchenko, A. Tartakovsky. Discrete models of fluids: spatial averaging, closure, and model reduction. Submitted.