# ICE 2

Write a Python function that takes three input arguments $$h$$, $$k$$, and $$n$$, and returns the $$n\times n$$ matrix below. The $$2\times2$$ rotation block has its upper left corner at $$A(k,k)$$, where $$0\lt k\lt n$$. $A = \begin{bmatrix} \frac1h & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & -1\\ 0 &\frac1h & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & -1\\ \vdots & & \ddots & & && & & \vdots & \vdots\\ 0 & 0 & \cdots & \frac1h & 0 & 0 & 0 & \cdots & 0 & -1\\ 0 &0 & \cdots & 0 & \cos\frac{k\pi}n & \sin\frac{k\pi}n & 0 & \cdots & 0 & -1\\ 0 &0 & \cdots & 0 &-\sin\frac{k\pi}n & \cos\frac{k\pi}n & 0 & \cdots & 0 & -1\\ 0 & 0 & \cdots & 0 & 0 & 0 & \frac1h & \cdots & 0 & -1\\ \vdots & \vdots && & && & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & \frac1h & -1\\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & \frac1h \\ \end{bmatrix}$

Mail the completed .py file to the instructor .

Assignment 3 is posted.

Department of Mathematics, PO Box 643113, Neill Hall 103, Washington State University, Pullman WA 99164-3113, 509-335-3926, Contact Us