
Maple

Matlab Programming

K. Cooper

2012

Maple

Flow Control

Repetitive Operations

We can use sum() to sum vector elements.

v=1:5;

sum(v) gives 15

Of course, we could also do

u=ones(5,1); v*u to get the 15.

There is also a prod() function to evaluate the product of

the elements of the columns of a matrix.

Maple

Flow Control

Repetitive Operations

We can use sum() to sum vector elements.

v=1:5;

sum(v) gives 15

Of course, we could also do

u=ones(5,1); v*u to get the 15.

There is also a prod() function to evaluate the product of

the elements of the columns of a matrix.

Maple

Flow Control

Repetitive Operations

We can use sum() to sum vector elements.

v=1:5;

sum(v) gives 15

Of course, we could also do

u=ones(5,1); v*u to get the 15.

There is also a prod() function to evaluate the product of

the elements of the columns of a matrix.

Maple

Flow Control

Repetitive Operations

We can use sum() to sum vector elements.

v=1:5;

sum(v) gives 15

Of course, we could also do

u=ones(5,1); v*u to get the 15.

There is also a prod() function to evaluate the product of

the elements of the columns of a matrix.

Maple

Flow Control

For loops

for var=[range vector] expressions; end;

We could do the sum from the previous slide as

total=0; for i=1:5 total = total+i; end;

or again

total=0; for i=[1,2,3,4,5] total = total+i; end;

Maple

Flow Control

For loops

for var=[range vector] expressions; end;

We could do the sum from the previous slide as

total=0; for i=1:5 total = total+i; end;

or again

total=0; for i=[1,2,3,4,5] total = total+i; end;

Maple

Flow Control

For loops

for var=[range vector] expressions; end;

We could do the sum from the previous slide as

total=0; for i=1:5 total = total+i; end;

or again

total=0; for i=[1,2,3,4,5] total = total+i; end;

Maple

Flow Control

For loops

for var=[range vector] expressions; end;

We could do the sum from the previous slide as

total=0; for i=1:5 total = total+i; end;

or again

total=0; for i=[1,2,3,4,5] total = total+i; end;

Maple

Flow Control

While loops

while condition expressions; end;

We could do the sum from two slides ago as

total=0; i=1; while i<=5 total=total+i; i=i+1; end;

Note the extra work as compared with all previous

approaches.

Maple

Flow Control

While loops

while condition expressions; end;

We could do the sum from two slides ago as

total=0; i=1; while i<=5 total=total+i; i=i+1; end;

Note the extra work as compared with all previous

approaches.

Maple

Flow Control

While loops

while condition expressions; end;

We could do the sum from two slides ago as

total=0; i=1; while i<=5 total=total+i; i=i+1; end;

Note the extra work as compared with all previous

approaches.

Maple

Flow Control

While loops

Do not use while loops when you know beforehand how

many iterations you need.

Do not forget to change the variable you are testing �

while loops are the easiest way to put the computer in

an in�nite repetition.

Maple

Scripts and Functions

Types of programs

One can type sequences of commands on the Matlab

command line by using <Shift>+<Enter> to make

new lines.

For more comprehensive programming, create a �le of

Matlab commands. This �le must have a �.m�

extension.

A simple collection of Matlab commands is called a

script. It shares the variables of a Matlab session.

A self-contained sequence of commands that have

speci�c input and output is called a function.

Maple

Scripts and Functions

Scripts

Scripts are composed of ordinary Matlab commands

saved in a �le with a �.m� extension.

Scripts have access to all variables from the Matlab

session, and can modify them.

The Matlab session has access to all variables created

by the script.

A script is simply a way to save a sequence of

commands so it can be reused.

A script is called by typing the name of the �le it is

stored in, without the �.m� extension.

Maple

Scripts and Functions

Functions

A function must start with a special line

function output=name(arguments)

output is some matrix containing variables the Matlab

session will have access to. All other variables in the

function are private.

name is the name of the function, and the function must

be stored in a �le named name.m

arguments is some list of variables that are input from

the calling line in the Matlab session: e.g. x,y

This function is called as name(x,y)

Maple

Scripts and Functions

Where do I save it?

Save the �.m� �le in the directory where you will run

Matlab.

The pwd command lets you see the path of the directory

you are currently in

The ls command allows you to see the contents of your

current directory

Advanced users can change the MATLABPATH variable to

specify where they want to save �.m� �les using the

path command:

path(path,'newdirectory')

You can look at the current MATLABPATH using the

matlabpath command

Maple

Scripts and Functions

Arguments

Ordinarily there will be a one-to-one correspondence

between the arguments in the calling statement and the

arguments on the function line.

If there are more arguments on the function line than

in the calling statement, that is acceptable. Just test

the arguments in the function.

It is an error to have more arguments in the calling

statement than on the function line.

Every function gets the variable nargin that tells how

many arguments there are.

Maple

Scripts and Functions

Example

function [output_args] = mytest(x1,x2,x3)

if nargin>0, x1

end

if nargin > 1, x2

end

if nargin > 2, x3

end

end

In this case the call mytest('One argument') works. Note

that this function is saved in the �le mytest.m.

Maple

Scripts and Functions

Cell Arrays

In general the output argument will be a matrix;

possibly 1× 1 or 1× n.
If you need to send out multiple items of di�erent types

(e.g. numeric and character) you can use a cell array.

Cell arrays are indexed by integers using braces { }
Cell arrays can contain data of any type or dimension.

E.g. ca{1} = 1; ca{2}=[1,2;3,4]; ca{3}='Hello';

The argument list of a function can take a variable

varargin that is a cell array containing all the rest of

the arguments.

Maple

Scripts and Functions

Example

This simple function takes any set of plot options you specify

and applies them to a plot of the sine function from 0 to π.

function out = sineplot(varargin)

x = 0:.1:pi;

out{1}=[x;sin(x)];

out{2}=plot(x,out{1}(2,:),varargin{:});

end

It can be called as e.g.

sineplot('gd','LineWidth',3,'MarkerFaceColor',

'red','MarkerSize',15)

It returns handles to the data, and to the plot data series.

One could use those to modify the plot further.

Maple

Scripts and Functions

Example

This simple function takes any set of plot options you specify

and applies them to a plot of the sine function from 0 to π.

function out = sineplot(varargin)

x = 0:.1:pi;

out{1}=[x;sin(x)];

out{2}=plot(x,out{1}(2,:),varargin{:});

end

It can be called as e.g.

sineplot('gd','LineWidth',3,'MarkerFaceColor',

'red','MarkerSize',15)

It returns handles to the data, and to the plot data series.

One could use those to modify the plot further.

Maple

Scripts and Functions

Example

This simple function takes any set of plot options you specify

and applies them to a plot of the sine function from 0 to π.

function out = sineplot(varargin)

x = 0:.1:pi;

out{1}=[x;sin(x)];

out{2}=plot(x,out{1}(2,:),varargin{:});

end

It can be called as e.g.

sineplot('gd','LineWidth',3,'MarkerFaceColor',

'red','MarkerSize',15)

It returns handles to the data, and to the plot data series.

One could use those to modify the plot further.

	Flow Control
	Scripts and Functions

